
Eur. Phys. J. C 48, 561–578 (2006) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-006-0076-7

Regular Article – Theoretical Physics

Energy and decay width of the πK atom

H. Jallouli1,a, H. Sazdjian2,b

1 Centre National des Sciences et Technologies Nucléaires, Technopole Sidi Thabet 2020, Tunisie
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Abstract. The energy and the decay width of the πK atom are evaluated in the framework of the quasi-
potential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections
to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width
are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the
strong interaction S-wave πK scattering lengths from future experimental data concerning the πK atom.
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1 Introduction

Hadronic atoms represent new tools for probing strong
interaction dynamics at low energies [1–6]. If the hadro-
nic constituents are pseudoscalar mesons, then the probe
concerns the properties of spontaneous chiral symmetry
breaking in QCD. The simplest representative in that case
is the ππ atom (pionium), which was produced and studied
in the DIRAC experiment at CERN [7, 8] and to which
many theoretical studies were devoted [9–32]. At the next
level in that category one finds the πK atom, the proper-
ties of which are tightly related to those of the SU(3)×
SU(3) chiral symmetry breaking. In particular, the ener-
gies and widths of the atomic levels depend on the strong
interaction πK scattering lengths and through them on
various order parameters of chiral symmetry breaking. The
theoretical interest of those quantities justifies the prepar-
ation of new experimental projects for the production and
study of πK atoms [33, 34]. On theoretical grounds, the
properties of the πK atom were recently studied in detail
by Schweizer [35, 36] using the approach of nonrelativistic
effective field theories to the bound state problem [37].
The present work is devoted to the study of the prop-

erties of the πK atom using the quasipotential-constraint
theory approach [38–48] which was also applied to the pi-
onium case [20–23] and which consists of a relativistic and
covariant three-dimensional formulation of the bound state
problem. Our aim is to calculate the O(α) corrections to
the lowest-order formulas for the energy shift and decay
width of the πK atom, where α is the fine structure con-
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stant, and to provide the means of extracting with suffi-
cient precision the values of the strong interaction S-wave
πK scattering lengths from future experimental data.
We introduce with respect to our previous approach to

the pionium problem a slight modification, in that we for-
mulate from the start the bound state problem almost on
the mass shell. This is suggested by the substantial simpli-
fication one gains in order to reach the final results. The
leading nonrelativistic formulas, which are of order α3, are
expressed mainly in terms of threshold properties of the
strong interaction on-mass shell scattering amplitudes. In
general, bound state problems in quantum field theories
are formulated in terms of off-mass shell scattering ampli-
tudes or kernels; on the other hand, effective lagrangians,
like the one used in chiral perturbation theory, give rise to
a proliferation of terms, some of which do not contribute on
the mass shell. Therefore, one expects many cancellations
among unphysical quantities, which are automatically re-
alized in a formalism based from the start on the use of
on-mass shell scattering amplitudes and their minimal an-
alytic continuations.
However, because of the presence of infrared diver-

gences, the on-mass shell formalism ceases to be consistent
at higher orders in QED. Generally, up to O(α4) effects in
the bound state problem infrared divergences are unam-
biguously recognized, isolated and subtracted or cancelled,
according to the method of approach. This is an implicit
consequence of the Ward identities (and their analogues
for mass terms) satisfied by the theory. At higher orders,
for instance in the treatment of the Lamb shift problem,
infrared divergences can no longer be isolated without am-
biguity in an on-mass shell formalism of the bound state
problem. The recourse to an off-mass shell formalism be-
comes compulsory at this stage [49–51]. For the present
problem, since the precision that is sought does not neces-
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sitate the evaluation of O(α5 lnα−1) effects, this difficulty
will not show up.
The main corrections, of order α, to the lowest-order

formulas can be represented by three groups of terms:

(i) the pure elecromagnetic corrections, arising beyond
the Coulomb potential;

(ii) electromagnetic radiative corrections to the strong
interaction scattering amplitudes, including isospin
symmetry breaking effects;

(iii) second-order perturbation theory effects in the per-
turbative expansion of the bound state energy.

The sum of those corrections is found to be of the order
of a few per cent relative to the leading terms. Our results
agree with those obtained by Schweizer [35, 36].
The plan of the paper is the following. In Sect. 2, we

present the general bound state formalism that we use.
In Sect. 3, we consider the specific case of the πK atom,
for which we adopt a coupled channel formalism. In Sect. 4,
we calculate the lowest-order contributions to the real
and imaginary parts of the energy shift. In Sect. 5, pure
QED type corrections are evaluated. In Sect. 6, electro-
magnetic radiative corrections to the strong interaction
scattering amplitudes are taken into account. In Sect. 7,
a general property of cancellation of divergences of three-
dimensional integrals, present in our formalism, is dis-
played. Section 8 deals with second-order effects of the
perturbation theory expansion of the bound state energy.
A summary of the results follows in Sect. 9. Some evalua-
tions of integrals are presented in the appendix.

2 Bound state formalism

It is generally recognized, on the basis of the hamiltonian
formalism, that relative times and relative energies of par-
ticles of multiparticle systems should not play a dynamical
role in relativistic theories. Constraint theory [52–64] al-
lows, through the use of first-class constraints, for the elim-
ination of redundant variables, respecting at the same time
the symmetries of the theory (in the present case Poincaré
invariance). For a two-particle system, described by mo-
menta p1 and p2, with physical masses m1 and m2, the
following constraint eliminates the relative energy in a co-
variant way:

C(P, p) ≡
(
p21−p

2
2

)
−
(
m21−m

2
2

)
= 0 ,

P = p1+p2, p=
1

2
(p1−p2) . (1)

That constraint also respects the symmetry between the
two particles and remains valid on the mass shell or in the
free case.
We next consider a prototype quantum field theory

with a given lagrangian describing, among others, the in-
teraction between two spin-0 particles, labeled 1 and 2.
Let T be the on-mass shell elastic scattering amplitude of
the process 1+2→ 1′+2′. [T is defined from the S ma-
trix by the relation Sfi = δfi+(2π)

4δ4(P −P ′)Tfi, where

P and P ′ are the total momenta of the ingoing and outgo-
ing particles.] T is then a function of the two Mandelstam
variables s= P 2 and t= q2, with q = (p1−p′1). For conve-
nience, we define a modified scattering amplitude T̃ :

T̃ (s, t) =
i

2
√
s
T (s, t) . (2)

Since the equations we are developing are manifestly
covariant, the total momentum P of the system defines
a privileged direction and all momenta can be decom-
posed along longitudinal (one-dimensional) and transverse
(three-dimensional) components with respect to P . How-
ever, to simplify notation, we shall henceforth stick to the
center-of-mass frame (P= 0) and represent vectors with
their temporal and spatial components.
The starting point of the present formalism is the pos-

tulate that T̃ satisfies, by means of an effective propagator
g0, a three-dimensional Lippmann–Schwinger type equa-
tion leading to the definition of a kernel or a potential
V (s, t):

V = T̃ −V g0 T̃ . (3)

This equation can be used to calculate V either iteratively
from T̃ , or from a perturbative expansion of T̃ itself. The
iterative integration is three-dimensional, taking into ac-
count constraint (1). Thus, if the two particle momenta
linking T̃ to V are (p1−k) and (p2+k), total momentum
being conserved, constraint (1) applied to them yields k0 =
0 and integration concerns the three-momentum k. The
latter integration does not, however, preserve the mass-
shell character of T̃ ; it forces the correspondingmomentum
transfer −k2 to take unphysical values down to −∞. The
situation here is very analogous to that of nonrelativistic
dynamics.We consider it as corresponding to aminimal ex-
tension of the scattering amplitude to the off-shell case, in
the sense that it does not imply introduction of new terms
but simply an extension of the domain of validity of the
expression of T̃ to a larger one.
The expression of g0 is chosen so that V is hermitian

in the elastic unitarity region [45, 46]. Noticing that con-
straint (1) implies equality of the Klein–Gordon operators
of particles 1 and 2,

H0(s,p)≡
(
p21−m

2
1

) ∣∣
C
=
(
p22−m

2
2

) ∣∣
C
= b20(s)−p

2,

b20(s)≡
s

4
−
1

2

(
m21+m

2
2

)
+

(
m21−m

2
2

)2

4s
, (4)

g0 is chosen as the propagator associated with these
operators:

g0(s,p) =
1

H0(s,p)+ iε
=

1

b20(s)−p
2+iε

. (5)

On the mass shell, one has p2 = b20(s) and H0 vanishes.
However, inside the integration domain of the iterative
series, p is replaced by (p−k) and H0 takes the value
(2p ·k−k2).
It is advantageous in some instances to rewrite the

scattering amplitude in terms of a two-particle irreducible
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kernel. Introducing the two-particle irreducible kernel K
and the two-particle free propagator G0, one has T =K+

KG0T , and T̃ takes the form

T̃ = K̃+ K̃ G̃0 T̃ , (6)

where K̃ = iK/(2
√
s ) and G̃0 =−i2

√
sG0, with

G0 =G10G20, Ga0 =
i

p2a−m
2
a+iε

, a= 1, 2 . (7)

Then the potential V can be expressed in terms of the
kernel K̃:

V = K̃
(
1−
(
G̃0− g0

)
K̃
)−1
, (8)

the integrations involving G̃0 being four-dimensional.
We assume that V has been calculated (exactly or ap-

proximately) from T̃ or K̃. Because of the mass shell condi-
tion imposed on the external particles, it is, like T̃ , a func-
tion of s and t only: V = V (s, t). In x-space, obtained by
Fourier transformation with respect to q (= (p−p′)), it is
a local function of x; all the nonlocal character of the in-
teraction is now contained in the energy dependence of V .
That feature does not remain true in an off-mass shell for-
mulation, where V may depend on the operator p2.
We next introduce the Green function associated with

V and T̃ (integrations on internal variables are implicit):

G(s;p,p′) = (2π)3δ3(p−p′)g0(s,p)

+ g0(s,p)V (s,−k
2)G(s;p−k,p′)

= g0+ g0 T̃ g0 . (9)

SinceG is an off-mass shell quantity, the external momenta
p and p′ are not restricted in the above equations to the
mass shell and T̃ is extended off the mass shell through the
continuation of the variable t.
In the presence of bound states, G develops poles in s.

(We assume C, P and T invariances.) Let s0 be the mass
squared of such a bound state (s0 > 0); then, in the vicinity
of s0, G behaves as:

G �
s→s0

Ψ Ψ†

(s− s0+iε)
, (10)

where Ψ† is the adjoint of Ψ . Since (by construction) the
kernel V does not have singularities, at least in the vicinity
of the two-body threshold, one deduces from (9) and (10)
the wave equation

[
g−10 −V

]
Ψ = 0 . (11)

The normalization and orthogonality properties of wa-
ve functions are obtained in the standard way [44, 47, 65].
Let us assume that the spectrum contains several non-
degenerate bound states, labelled by an integer n, with
masses squared sn > 0. (Generalization to the degenerate
case is straightforward.) Designating by G−1 the inverse of
G [G−1 = g−10 −V ] and writing the wave equation of the

bound state n as G−1(sn)Ψn = 0, one easily arrives at the
equation

Ψ†n

(
G−1(s)−G−1(sn)

s− sn

)
G(s) =

Ψ†n
s− sn

. (12)

Taking successively the limits s→ sn and s→ sm (m �= n),
one obtains the normalization and orthogonality condi-
tions:
∫
d3p

(2π)3
Ψ†n

(
∂G−1(s)

∂s

)∣∣
∣
∣
s=sn

Ψn = 1 , (13)

∫
d3p

(2π)3
Ψ†n

(
G−1(sn)−G−1(sm)

sn− sm

)
Ψm = 0, sn �= sm .

(14)

The perturbative calculation of energy shifts from
a zeroth-order approximation is also obtained with stan-
dard techniques [28–30,47, 65]. Let us assume that the
kernel V can be separated into two parts,

V = V1+V2 , (15)

such that the solutions corresponding to V1 are known. Let
G1 be the Green function associated with V1:

G1 = g0+ g0 V1G1 . (16)

We designate by ϕn the corresponding bound state wave

functions with masses squared s
(0)
n . The complete Green

function is constructed fromG1 and the kernel V2:

G=G1+G1V2G . (17)

The scattering amplitude due to V2 is obtained from V2 and
G1:

T̃2 = V2+V2G1 T̃2 , (18)

from which one deduces:

G=G1+G1 T̃2G1 . (19)

To obtain the perturbative expansion around the bound
state n, one isolates the corresponding pole in G1:

G1 =G
′
1+

ϕnϕ
†
n(

s− s(0)n +iε
) . (20)

The reduced scattering amplitude T̃ ′2 is constructed from
the reduced Green function G′1 and V2:

T̃ ′2 = V2+V2G
′
1 T̃
′
2 . (21)

The relationship between T̃2 and T̃
′
2 is:

T̃2 =

⎛

⎝1− T̃ ′2
ϕnϕ

†
n(

s− s
(0)
n +iε

)

⎞

⎠

−1

T̃ ′2 . (22)
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Expressing in (19) G1 and T̃2 in terms of G
′
1, T̃

′
2 and the

pole term, one obtains the decomposition (integrations are
implicit)

G=G′1+G
′
1 T̃
′
2G
′
1

+
(
1+G′1T̃

′
2

) ϕnϕ
†
n(

s− s(0)n −
(
ϕ†n T̃ ′2 ϕn

)
+iε
)
(
1+ T̃ ′2G

′
1

)
,

(23)

from which one deduces the value of the mass squared of
the bound state n [28–30]:

sn = s
(0)
n +

(
ϕ†n T̃

′
2 ϕn

)
. (24)

Expansion of T̃ ′2 in terms of V2 and G
′
1 according to (21)

yields the perturbative series of sn. Up to second order in
V2, the expression of sn is [47, 65]

sn = s
(0)
n +

{
(
ϕ†n V2 ϕn

)
+
(
ϕ†n V2G

′
1 V2 ϕn

)

+
(
ϕ†n V2 ϕn

)(
ϕ†n
∂V2

∂s
ϕn

) }∣∣
∣
∣
s=s

(0)
n

. (25)

3 πK system

The πK atom is formed in the charged sector (π−K+ or its
charge conjugate) under the effect of the Coulomb interac-
tion and decays under the effect of the strong interaction
predominantly into the neutral sector (π0K0 or its charge
conjugate). Branching ratios of other decays, involving
photons, do not exceed a fraction of a per cent. It is natural
to treat the πK system by means of a coupled channel for-
malism by generalizing the formalism developed in Sect. 2
with a matrix notation.
We label with the index c the quantities related to the

charged sector (π−K+) and with the index n those related
to the neutral sector (π0K0). Because of the decay process
π−K+→ π0K0, the energy of the bound state becomes
complex with a negative imaginary part. The scattering
amplitudes and Green functions involving the above sec-
tors have a common pole at the position of the complex
energy of the bound state. We introduce a two-component
wave function Ψ by

Ψ =

(
Ψc
Ψn

)
(26)

and define the potential V in matrix form in the corres-
ponding space:

V =

(
Vcc Vcn
Vnc Vnn

)
. (27)

The iteration effective propagator g0 [see (3)–(5)] is now
composed of two propagators:

g0 =

(
g0c 0
0 g0n

)
, g−10 =

(
g−10c 0
0 g−10n

)
. (28)

g0c and g0n are defined with the physical masses of the
particles, with respective energy factors b20c(s) and b

2
0n(s)

[see (4)].
The wave equation (11) takes now the form of two

coupled equations:

(
g−10c −Vcc

)
Ψc−VcnΨn = 0 , (29)

−VncΨc+
(
g−10n −Vnn

)
Ψn = 0 . (30)

The wave function Ψn represents an outgoing wave created
by the charged state; it can be eliminated in favor of Ψc,
yielding the wave equation for the latter wave function:

g−10c Ψc = VccΨc+Vcn (1− g0nVnn)
−1
g0nVncΨc . (31)

This is the bound state equation describing the properties
of the πK atom.
The potentials V are calculated from the Lippmann–

Schwinger type equation (3), written now in matrix form
in terms of the scattering amplitudes of the processes
π−K+→ π−K+, π−K+→ π0K0, π0K0→ π−K+, π0K0

→ π0K0, which we designate respectively by T̃cc, T̃nc, T̃cn
and T̃nn, T̃ being defined in (2). The relationships of the
components of V and T̃ are

Vcc = T̃cc−Vcc g0c T̃cc−Vcn g0n T̃nc ,

Vcn = T̃cn−Vcc g0c T̃cn−Vcn g0n T̃nn ,

Vnc = T̃nc−Vnc g0c T̃cc−Vnn g0n T̃nc ,

Vnn = T̃nn−Vnc g0c T̃cn−Vnn g0n T̃nn . (32)

When electromagnetism and isospin symmetry breaking
are switched off, one remains with the strong interaction
or hadronic amplitudes T̃h in the isospin symmetry limit;

these are related to the isospin invariant amplitudes T̃ I in
the following way:

T̃cc,h =
1

3

(
2T̃ 1/2+ T̃ 3/2

)
,

T̃cn,h = T̃nc,h =−

√
2

3

(
T̃ 1/2− T̃ 3/2

)
,

T̃nn,h =
1

3

(
T̃ 1/2+2T̃ 3/2

)
. (33)

One also defines the isospin even (+) and odd (−) ampli-
tudes:

T̃+ =
1

3

(
T̃ 1/2+2T̃ 3/2

)
,

T̃− =
1

3

(
T̃ 1/2− T̃ 3/2

)
. (34)

The decomposition into partial waves is done according to
the formula (in the c.m. frame)

−2
√
s T̃ I(s, t) = 16π

∞∑

�=0

(2�+1)tI�(s)P�(cos θ) , (35)
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while the scattering lengths and effective ranges are de-
fined from the threshold expansion of the real part of tI� :

Re tI� (s) =

√
s

2

(
p2
)� (
aI� + b

I
�p
2+O

((
p2
)2))

. (36)

The iteration series (32) defining the potentials involve
with the presence of the effective propagators g0 three-
dimensional diagrams, which we call constraint diagrams
due to the constraint (1) that is used there (see Sect. 2).
They cancel the s-channel singularities of the scattering
amplitudes in the scattering region and provide potentials
that are real and regular in the total energy variable, be-
ing thus appropriate for a continuation to the bound state
region.
For Feynman diagrams involving QED parts, the calcu-

lation of V can be done with a simultaneous perturbative
expansion of the scattering amplitude in the fine structure
constant α. Since the bound state region is close to the
two-particle threshold, one can use for the evaluation of
the magnitude of the corresponding terms the threshold
expansion method developed by Beneke and Smirnov [66],
which consists of making the expansion already at the level
of the integrand, using dimensional regularization, by rec-
ognizing the various types of infrared singularities that
might arise. The momenta that are relevant for that type
of analysis are classified as potential, soft, ultrasoft and
hard [66].
In order to apply perturbation theory to (31) for the

evaluation of the bound state energy levels, it is natural to
choose the nonrelativistic Coulomb potential as the zeroth-
order potential, associated with the nonrelativistic kinetic
energy. To this end, we separate from the total energy P0
the mass term by defining (in the c.m. frame) the binding
energy E :

√
s= P0 =mπ− +mK++E . (37)

Expanding s with respect to E , one has for the c.m. mo-
mentum squared factor b20c(s) [see (4)]

b20c(s)� 2µE

(

1+

(
m2
π−
+m2

K+
−m

π−
m
K+

2m
π−
m
K+

(
m
π−
+m

K+

)

)

E

)

,

µ=
m
π−
m
K+(

m
π−
+m

K+

) . (38)

The Coulomb potential, which we designate by VC, ap-
pears in the nonrelativistic expansion of the potential Vcc
with the coefficient 2µ:

Vcc = 2µVC+V cc , VC =−
α

r
. (39)

Therefore, we can divide the whole wave equation by 2µ
and recover at zeroth order the nonrelativistic hamilto-
nian. The quadratic part in E in the expression of b20(s)
above can then be treated as a part of the perturbation.
Furthermore, by absorbing in the definition of wave func-
tions the factor (µ/(mπ− +mK+))

1/2 (within the present
approximation) one recovers from (13) the usual nonrela-
tivistic normalization for the zeroth-order wave

functions ϕn:
∫
d3p

(2π)3
ϕ†nϕn = 1 . (40)

Thus, ϕ satisfies the Schrödinger equation

E(0)n ϕ
m
n� =

(
p2

2µ
+VC

)
ϕmn� , E

(0)
n =−

µα2

2n2
,

n≥ �+1 , (41)

with n, � andm representing the principal, orbital and azi-
muthal quantum numbers, respectively.
Similarly, isolating, as in (37), from the bound state en-

ergies the mass term, by writing
√
sn =mπ− +mK+ +En

and

√
s
(0)
n =mπ− +mK++E

(0)
n , we recover from (25) the

perturbation series of the nonrelativistic theory, written
here up to second order:

En =

E(0)n +

(
1

2µ

){
(
ϕ†nV2ϕn

)
+
(
ϕ†nV2G

′
1V2 ϕn

)
}∣∣
∣∣
E=E

(0)
n

−

(
m2
π−
+m2

K+
−m

π−
m
K+

2m
π−
m
K+

(
m
π−
+m

K+

)

)

E(0)2n . (42)

The last term comes from the relativistic corrections of
the left-hand side of the wave equation (31) (cf. (38)). The
last term of (25) has been discarded, since it does not con-
tribute to order α4.
The bound state energy En is in general complex. We

designate by En its real part; its imaginary part is equal to
−Γn/2, where Γn is the decay width of the bound state into
two neutral mesons. We thus have

En =En−
i

2
Γn . (43)

The Green function G1 [see (16)] that is associated
with the zeroth-order potential V1, is now essentially the
Green function of the Coulomb potential, which we des-
ignate by GC, the expression of which has been given by
Schwinger [67]:

GC (E,p,p
′) = 2µG1 =

(2π)3δ3 (p−p′)

(E−p2/(2µ))

−
1

(E−p2/(2µ))

4πα

(p−p′)2
1

(E−p′2/(2µ))

−
1

(E−p2/(2µ))
4παηI (E,p,p′)×

1

(E−p′2/(2µ))

� 2µ

{
g0c+ g0c2µVCg0c− g0c8πµαηIg0c

}
, (44)

where I and η are defined as

I(E,p,p′) =

∫ 1

0

dρ ρ−η
[
ρ(p−p′)2

+(1−ρ)2
η2

α2
(
E−p2/(2µ)

) (
E−p′2/(2µ)

)]−1
,

η =
α

2
√
−E/(2µ)

. (45)
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The quantity G′C will then correspond to GC from which
the pole term around which perturbative expansion is or-
ganized is removed:G′C = 2µG

′
1 [see (20)].

The potential V2 that appears in the perturbative for-
mula (42) is obtained from the wave equation (31), by
subtracting from the kernel of the right-hand side the
Coulomb part [see (39)]:

V2 = V cc+Vcn
(
1− g0nVnn

)−1
g0nVnc . (46)

In order to use this expression in (42), we first expand
the factor (1− g0nVnn)

−1 in g0n and evaluate the order
of magnitude of each term of the expansion. The integra-

tion of g0n yields the factor −i
√
b20n(s)/(4π) [see (A.5)],

where the total energy is fixed at the bound state en-
ergy and b20n(s) is defined in (4) with masses of the neu-
tral mesons, mπ0 and mK0 ; it is equal to the square of
the c.m. momentum, which we represent by p∗, of the sys-
tem π0K0 after the decay of the bound state: b20n(s) = p

∗2.
The latter is essentially determined by the mass differ-
ences between charged and neutral mesons. Defining ∆m
as

2∆m≡mK+−mK0+mπ−−mπ0 = 0.622MeV,
(47)

one has approximately

( p∗

2µ

)2
�
∆m

µ
� 0.0029, (48)

which is a quantity of the order of α/2. Therefore, each g0n
can be estimated numerically as a quantity of the order of
α1/2. Furthermore, the real part of the energy of the bound
state receives contributions from even powers of g0n, while
the imaginary part (the decay width) receives contribu-
tions from odd powers of g0n. With these estimates, (42)
becomes:

2µ∆En ={
ϕ†n�V ccϕn�+ϕ

†
n�Vcng0nVncϕn�+ϕ

†
n�V cc

G′C
2µ
V ccϕn�

+ϕ†n�

(
V cc
G′C
2µ
Vcng0nVnc+Vcng0nVnc

G′C
2µ
V cc

)
ϕn�

}∣∣
∣
∣
E=E

(0)
n

−

(
m2
π−
+m2

K+
−m

π−
m
K+

(m
π−
+m

K+
)2

)

E(0)2n . (49)

Here, ∆En represents the energy shift with respect to
the nonrelativistic Coulomb bound state energy (41). We
have retained, for the real part of the energy, terms con-
tributing to the orders α3 and α4, while for the imagi-
nary part of the energy (the decay width), we have re-
tained terms contributing to the orders α3(∆m/µ)1/2

and α4(∆m/µ)1/2. Higher-order terms are numerically
negligible.

4 Energy shift and decay width
in lowest order

We evaluate in this section the lowest-order contributions,
O(α3) and O(α3(∆m/µ)1/2), to the real and imaginary
parts of the energy, respectively; these come from the first
two terms of the decomposition (49). Pure electromagnetic
interactions beyond the Coulomb potential contribute only
at O(α4) and hence can be ignored at the present level.
A similar conclusion holds also for the interference terms
between strong and electromagnetic interactions. There-
fore, one has to consider in the potentials V cc, Vcn and Vnc
solely contributions coming from strong interactions.
All qualitative properties that are derived subsequent-

ly depend only on the short-range nature of the strong
interaction, or equivalently, on the absence of massless par-
ticles in it; the particular model used for representing the
strong interaction scattering amplitude is not relevant, al-
though we will particularly refer to the chiral effective la-
grangian [68–70] as a prototype theory which will also be
used for the numerical calculations.
It is preferable here to evaluate V from its relationship

with the two-meson irreducible kernel K̃, (8), which must
be considered in its matrix form in the two-channel space.
The kernel K̃ is made of vertices and eventually of loops
andmay havemomentum dependences. By analyzing, with
the threshold expansion method [66], its behavior when
integrated in (8) with g0 near the two-particle threshold
(three-dimensional integration), one finds that the even-
tual three-momentum dependences of K̃ produce after in-
tegration momenta in the form p2 or q2 multiplying mo-
mentum independent pieces. Such terms have additional
α2 contributions with respect to the momentum indepen-
dent pieces when considered in the QED bound states and
thus can be neglected. Concerning the four-dimensional in-

tegration with G̃0, one notices that the presence of loop
momenta in the numerator improves in general the in-
frared behavior of the integral; in this case it is only the
hard momenta, which feel the ultraviolet behavior of the
integral, that are concerned by their presence. Therefore,
without loss of generality, the infrared behavior of inte-
grals involving the kernel K̃ can be studied by considering
the latter as a constant and its value fixed at the two-
meson threshold. In princple, the total energy is fixed at
the bound state energy, but since K̃ is a smooth function of
the energy and since the binding energy is of order α2, one
can continue without harm the energy of K̃ up to thresh-
old. By convention, one chooses for the strong interaction
masses in the isospin symmetry limit the charged meson
masses.
With the above simplification, the integrations in (8)

involve only G̃0 and g0. Here, however, the effective prop-
agators g0c and g0n are defined with the meson physical
masses [see (1)]. It is then necessary to carry out a con-
sistent calculation, to also consider the propagators in G̃0
with the corresponding physical masses. The details of the
integrations are presented in the appendices; see (A.5)–
(A.7). A typical one-loop diagram, involving G̃0, and its
constraint diagram, involving g0, is presented in Fig. 1.
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Fig. 1. Two-meson one-loop diagram and its constraint dia-
gram, denoted with a cross

The integration of g0c, at the bound state energy,

provides the factor
√
−b20c(s)/(4π) [see (A.5)]; it cancels

a similar factor present in the integral of G̃0c [see (A.6)–
(A.7)]. Similarly, the inegration of g0n, at the bound state

energy, provides the factor −i
√
b20n(s)/(4π); it cancels the

imaginary part of the integral of G̃0n. The remaining parts
of the integrals of G̃0c and G̃0n are real smooth functions
of the energy and can be replaced, dropping O(α2) correc-
tions, by their values at the charged meson threshold. The
above calculations can be repeated with all loops present
in (8). One thus recovers the real part of the scattering
amplitude at the charged meson threshold. Once the con-
tributions of the effective propagators g0 have been taken
into account, and in order to avoid double-countings, one
must take again in the remaining parts of the strong in-
teraction amplitudes the equality of the masses of isospin
partners, fixed at the charged meson masses. The effect
of mass differences is taken into account separately within
the calculations of electromagnetic and isospin symmetry
breaking contributions.
In summary, the strong interaction potentials that con-

tribute at first-order perturbation theory to the complex
shift of the bound state energy are given by the (charged
meson) threshold values of the real parts of the strong in-
teraction scattering amplitudes:

V cc,h = Vcc,h =Re T̃cc,h
∣
∣∣
thr.
,

Vcn,h = Vnc,h =Re T̃cn,h
∣
∣
∣
thr.
= Re T̃nc,h

∣
∣
∣
thr.
, (50)

where the subscript h refers to the purely hadronic part
of the corresponding quantity. The threshold values of the
real parts of the scattering amplitudes are given by the
S-wave scattering lengths (33)–(36). One finds

Vcc,h =−
4π

3
(2a

1/2
0 +a

3/2
0 ),

Vcn,h = Vnc,h =
4π

3

√
2 (a

1/2
0 −a

3/2
0 ) . (51)

Since those potentials are constant in momentum space,
they yield delta-functions in x-space and their diagonal
matrix elements become proportional to the square of the
modulus of the wave function at the origin. In that case,
only S-wave states contribute. One finds for the complex
energy shift at first order:

E(1)h,n� =E
(1)
h,n�−

i

2
Γ
(1)
h,n�

=
1

2µ
ϕ†n�

[
Vcc,h+Vcn,h g0n Vnc,h

]
ϕn�

=−
1

2µ

4π

3

[ (
2a
1/2
0 +a

3/2
0

)

+i
2p∗n0
3

(
a
1/2
0 −a

3/2
0

)2 ] ∣∣
∣ϕn0(0)

∣
∣
∣
2

δ�0 , (52)

where p∗n0 is the c.m. momentum of the neutral mesons
after the decay of the bound state with quantum numbers
(n, �= 0). Taking into account that

∣
∣
∣ϕn�(0)

∣
∣
∣
2

=
µ3α3

πn3
δ�0 (53)

and introducing the isospin even and odd scattering
lengths (34),

a+0 =
1

3

(
a
1/2
0 +2a

3/2
0

)
, a−0 =

1

3

(
a
1/2
0 −a

3/2
0

)
,

(54)

we obtain

E
(1)
h,n0 =−2µ

2 α
3

n3
(
a+0 +a

−
0

)
, (55)

Γ
(1)
h,n0 = 8 p

∗
n0 µ

2 α
3

n3
(
a−0
)2
. (56)

The above formulas correspond to the expressions found by
Deser et al. [1–4] and provide the leading effects in the shift
in the real part of the energy of the bound state and in the
width of the decay into the neutral mesons.
Numerical predictions about the scattering lengths are

made from chiral perturbation theory (ChPT). They are
summarized in Table 1.
On experimental grounds, the values of the scattering

lengths are obtained from an extrapolation of high energy
data down to the threshold. A complete analysis of the
problem, using the Roy [74] and Steiner [75] equations, has
given [76]

mπa
1/2
0 = 0.224±0.022 ,

mπa
3/2
0 =−(0.448±0.077)×10−1 . (57)

Although the two-loop results of ChPT are not yet
well understood [77–79], one notices, with the improve-
ment of the accuracy of the calculations, a reasonable con-
vergence of the theoretical estimates towards the experi-
mental values. We shall adopt the central values of the
experimental results (57) for the estimates that we shall
do in the subsequent sections for the various corrections
to the lowest-order results; uncertainties in these correc-
tions related to the central values will be neglected. For

Table 1. Theoretical predictions for the S-wave scattering
lengths from ChPT

ChPT mπa
1/2
0 mπa

3/2
0

Tree [71] 0.14 −0.07
One-loop [72] 0.19±0.02 −0.05±0.02
Two-loop [73] 0.220 −0.047
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Table 2. Zeroth-order energies, first-order energy shifts, decay
widths and lifetimes of hadronic origin of the first three bound
states

n � E(0) (eV) E
(1)
h (eV) Γ

(1)
h (eV) τ

(1)
h (10−15 s)

1 0 −2898.61 −8.86 0.175 3.76
2 0 −724.65 −1.11 0.022 30.09
2 1 −724.65 0.00 0.000 ∞

the present lowest-order results we obtain for the first three
bound states the following estimates for the energies, decay
widths and lifetimes (τ), presented in Table 2.
In the following, we shall evaluate O(α) corrections to

these results. They originate from three effects: the pure
electromagnetic interaction, electromagnetic radiative cor-
rections to the strong interaction and second-order pertur-
bation theory effects of the bound state energy expansion.
We shall consider them separately.

5 Electromagnetic interaction

In this section we consider mainly corrections coming from
the pure electromagnetic interaction. They arise in the
channel π−K+→ π−K+ from one- and two-photon ex-
change diagrams and also include vacuum polarization
contribution. The corresponding diagrams, together with
the constraint diagram of the box-ladder diagram, are
represented in Fig. 2. Vertex correction diagrams, associ-
ated with self-energy diagrams, contribute only at order
α5 lnα−1 and may be ignored at the present level of preci-
sion (order α4).
The on-mass shell one-photon exchange diagram (a)

gives the contribution

Vcc,1γ =
1

2
√
s

e2

t

(
2
(
s−m2π−−m

2
K+

)
+ t
)

(58)

[e2 = 4πα], from which one has to subtract the Coulomb
potential (39). An expansion of the total energy, according
to (37), should also be made.
In the category of two-photon exchange diagrams, we

isolate the box-ladder, crossed-ladder and constraint di-
agrams, (b)–(d). The box-ladder and crossed-ladder dia-

Fig. 2. One- and two-photon exchange
diagrams contributing to the pure electro-
magnetic corrections. The diagram with
a cross represents the constraint diagram

grams have separately infrared divergences, as well as spu-
rious singularities at threshold. To avoid their appearance,
one must consider the sum of the above three diagrams,
withinwhich severalmutual cancellations occur. Themech-
anism of cancellation is best understood with the threshold
expansion method [66]. The leading part of potential mo-
menta contribution, of order α2 lnα−1, coming from the
box-ladder diagram, is cancelled by that of the constraint
diagram. The next-to-leading term, of order α4, vanishes in
four dimensions. Ultrasoft momenta do not contribute on
the mass shell. Soft momenta contributions of box-ladder
and crossed-ladder diagrams, of orderα3 lnα−1, cancel each
other.One remainswithO(α4) terms, the sum ofwhich also
vanishes on the mass shell. Therefore, the sum of the three
diagrams (b)–(d) does not contribute at order α4. Details
can be found in the appendix.
The two-photon exchange diagrams have generally ul-

traviolet divergences. The counterterm lagrangian, which
is a four-meson contact interaction term, does not con-
tribute at order α4.
Diagrams (e) and (f) contribute at order α4. The sum of

their contribution is (A.18):

Vcc,2γ =−
(m
π−
+m

K+
)

8
√
s

e4
√
−t
. (59)

Diagram (g) does not contribute at order α4.
The total corrective contribution of one- and two-pho-

ton exchange diagrams (without vacuum polarization),
Vcc,1γ minus the Coulomb potential (39) and Vcc,2γ , tak-
ing also into account the kinematic energy correction factor
coming from the relativistic wave equation operator (last
term of (49)), is:

E
(1)
(1+2)γ,n� =

µ

8

(
3−

µ

(m
π−
+m

K+
)

)α4

n4

+
µ2

(m
π−
+m

K+
)

α4

n3
δ�0−

µα4

n3(2�+1)
.

(60)

This coincides with similar results obtained from the
Bethe–Salpeter equation (in the Coulomb gauge) [80] and
from the Breit equation [46].
Another electromagnetic contribution is represented

by the vacuum polarization diagram (h). Generally, in
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positronium, this diagram contributes at order O(α5).
However, due to the mass differences between the elec-
tron, entering in the internal loop, and mesons, the con-
tribution of the vacuum polarization diagram becomes
enhanced [24]. It is numerically situated for the energy
shift between O(α3) and O(α4) and turns out to be the
most important correction to the strong interaction effect.
It can be evaluated analytically [16, 31, 32]. We have eval-
uated it numerically for the first three bound states, from
the expression of the corresponding local potential [81].
The results are compatible with the analytic evaluations
and are presented below in Table 3.
Apart from the pure electromagnetic corrections, we

shall also evaluate here the strong interaction contribu-
tions to the meson electromagnetic form factors. The rea-
son is that the interference effects between strong interac-
tion and electromagnetism in the scattering amplitudes are
evaluated in the literature without the above form factors,
which are considered as parts of the one-photon exchange
diagram (see Fig. 3).
Defining the hadronic part of the electromagnetic form

factor of pseudoscalar mesons as [69]

FV (t) = 1+
1

6
〈r2〉t+O

(
t2
)
, (61)

where 〈r2〉 defines the mean square charge radius of the
meson, the corresponding contribution through the one-
photon exchange diagram is:

Vcc,hff = 2µe
2 1

6
〈r2〉 . (62)

Table 3. Electromagnetic corrections (elm) to the energy
shift, composed of contributions of one- and two-photon ex-
changes ((1+2)γ), vacuum polarization (vpol) and hadronic
form factors (hff)

n � E
(1)
(1+2)γ

(eV) E
(1)
vpol (eV) E

(1)
hff (eV) E

(1)
elm (eV)

1 0 −0.147 −2.561 0.051 −2.657
2 0 −0.025 −0.296 0.006 −0.315
2 1 −0.006 −0.025 0.000 −0.031

Fig. 3. Strong interaction contribution to the electromagnetic
form factors of mesons

[hff: hadronic form factor.] The sum of the contributions of
the π andK mesons to the energy shift is

E
(1)
hff,n� =

2

3
µ3
α4

n3
(
〈r2〉π− + 〈r

2〉K+
)
δ�0 . (63)

The mean square radii of the π andK mesons were cal-
culated from the data in [82] in the framework of ChPT
to two loops. The values found there, which we use for the
numerical evaluations, are the following:

〈r2〉π− = (0.452±0.013) fm
2,

〈r2〉K+ = (0.363±0.072) fm
2 . (64)

Numerical estimates of the various electromagnetic con-
tributions to the first three bound states are summarized
in Table 3.

6 Strong interaction in the presence of
electromagnetism

To complete the evaluation of corrections at first order of
perturbation theory, we have now to consider the inter-
ference effects between strong interaction and electromag-
netism, including isospin symmetry breaking. Since we are
interested in O(α) corrections to the strong interaction ef-
fects found in Sect. 4, it is sufficient to consider diagrams
with a one-photon propagator. The analysis is best carried
out starting from the general relationship of the potential
V with the two-meson irreducuble kernel K̃ [see (8)], which
was already used in the pure strong interaction case.
The kernel K̃ can be separated into three parts, pure

hadronic, K̃h, pure electromagnetic, K̃γ , and a part with

interference between both, K̃hγ : K̃ = K̃h+ K̃γ+ K̃hγ. Re-

placing K̃ in (8) and then linearizing with respect to K̃γ+

K̃hγ and subtracting the pure hadronic potential and the
pure electromagnetic kernel K̃γ , one ends up with the ex-
pression of the interference potential:

Vhγ =
(
1− K̃h (G̃0− g0)

)−1 (
K̃γ+ K̃hγ

)

×
(
1− (G̃0− g0) K̃h

)−1
− K̃γ . (65)

Retaining the first few terms, we have for Vhγ an expansion
as follows:

Vhγ = K̃hγ+ K̃h (G̃0− g0) K̃γ+ K̃γ (G̃0− g0) K̃h

+ K̃h (G̃0− g0) K̃γ (G̃0− g0) K̃h+ · · · (66)

In the present approximation, K̃γ is the one-photon ex-

change kernel; also K̃hγ contains effects of isospin symme-

try breaking; internal propagators, such as G̃0, should be
considered with physical masses.
Typical diagrams, in the charged–charged (cc) channel,

are represented in Fig. 4.
Diagrams (a)–(c) represent one-photon exchanges in

the t-channel, u-channel and s-channel respectively; dia-
gram (d) is the constraint diagram of diagram (c). Also
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Fig. 4. Electromagnetic radiative cor-
rections to the strong interaction in the
charged–charged channel; diagram d is
the constraint diagram of diagram c; di-
agrams symmetric to those, as well as
self-energy diagrams, are not drawn

four other diagrams symmetric to the above ones exist;
futhermore, one must also include the contributions of the
self-energy diagrams. Each of those diagrams has infrared
divergences on the mass shell; however, mutual cancella-
tions occur by grouping several diagrams. The sum of the
t-channel diagrams and the contributions of the self-energy
diagrams is finite at order α4. The constraint diagram
cancels the infrared divergence and spurious singularities
of the s-channel diagram generated by the potential mo-
menta [66]. The remaining part of the s-channel diagram,
which is still infrared divergent and generated by the hard
momenta, is associated with the u-channel diagram, which
has similar singularities; their sum is free of divergences
and of spurious singularities. Diagrams where the photon
is emitted from the vertex (not drawn in Fig. 4) are not
infrared singular and contribute as O(α4). The sum of all
the above diagrams is infrared finite and of order α4. It
defines the regularized real part of the strong interaction
vertex in the presence of electromagnetism; its value at the
bound state energy differs from its value at threshold by an
O(α2) term and therefore can be replaced by the value of
the regularized real part of the vertex at threshold. (See the
appendix for details.)
In the charged–neutral (cn) or neutral–charged (nc)

channels, t-channel and u-channel type diagrams are ab-
sent. In that case, one has to associate the part of the
s-channel diagram generated by the hard momenta with
the self-energy contributions of the external charged par-
ticles and the same type of cancellations as above operate,
leading to the same qualitative result.
The analysis done above can be repeated with more

complicated diagrams. One has always to group several
diagrams of the same class to reach, with the aid of the
threshold expansion method [66], mutual cancellations of
infrared divergences and spurious singularities. The final
results that we obtain are very similar to those found
in Sect. 4, (50), with the only difference that the pure
strong interaction scattering amplitude is now replaced by
the regularized strong interaction amplitude in the pres-
ence of electromagnetism and isospin symmetry breaking:

V cc,h+hγ = Vcc,h+hγ =Re T̃
reg.
cc,h+hγ

∣∣
∣
thr.
,

Vcn,h+hγ = Vnc,h+hγ = Vcn = Vnc

=Re T̃ reg.cn

∣
∣
∣
thr.
= Re T̃ reg.nc

∣
∣
∣
thr.
. (67)

The threshold values of the regularized real parts of the
strong interaction scattering amplitudes in the presence
of electromagnetism deviate from the strong interaction
S-wave scattering lengths (51) by small amounts that we

designate by (∆(a+0 +a
−
0 ))hγ and (∆a

−
0 )hγ . One then has

Vcc,h+hγ =−4π
((
a+0 +a

−
0

)
+
(
∆
(
a+0 +a

−
0

))
hγ

)
,

Vcn = 4π
√
2
(
a−0 +

(
∆a−0

)
hγ

)
, (68)

where a+0 and a
−
0 are the pure strong interaction isospin

even and odd scattering lengths, respectively (54). For fur-
ther use, we define the following relative amounts:

δ
(1)
cc,hγ ≡

(
∆
(
a+0 +a

−
0

))
hγ(

a+0 +a
−
0

) , δ
(1)
cn,hγ ≡

(
∆a−0

)
hγ

a−0
.

(69)

The various diagrams entering in the calculation of
the strong interaction scattering amplitude in the pres-
ence of electromagnetism have also ultraviolet diver-
gences. They are eliminated by the low energy con-
stants of the effective chiral lagrangian in the presence of
electromagnetism [83, 84].
Turning back to the infrared problem, we emphasize

the following point. The constraint diagrams have elimi-
nated, to order α4, the infrared divergences and threshold
singularities of the scattering amplitudes and allowed the
definition of regularized real parts of them. In the litera-
ture, the scattering amplitudes are generally calculated in
the scattering region; then, infrared divergences are elim-
inated by factorizing the Coulomb phase [85], which does
not contribute to the cross section, and by combining the
process under consideration with real soft photon emission
processes [84, 86–89]. The remaining threshold singulari-
ties are then subtracted to define a regularized scattering
amplitude at threshold. In the present formalism, the use
of constraint diagrams for the definition of the potentials
circumvents the latter procedures on the mass shell (to
order α4), providing directly the regularized result. It can
be checked explicitly that the pieces that are cancelled by
the constraint diagrams are the same quantities that are
subtracted in procedures dealing with the scattering am-
plitudes in the scattering region. Therefore, the regularized
real parts of the amplitudes that we have defined in (67) are
identical to those defined in the literature.
More complicated diagrams than those of Fig. 4 involve

an increasing number of loops. However, in ChPT, the in-
crease in the number of loops decreases the order of magni-
tude of the corresponding correction at low energy; this is
why the chiral perturbation theory is organized in terms of
the number of loops [68–70]. Therefore, the diagrams of the
type of Fig. 4 represent the most important contributions
to the interference effects between strong interaction and
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Fig. 5. Two-loop diagram and its con-
straint diagrams

electromagnetism, apart from isospin partner mass differ-
ence insertion terms at the tree level, and practical calcula-
tion of these effects have been limited to them [84, 86–89].
Next-to-leading effects are represented by diagrams of the
type of Fig. 5. The latter diagrams contain infrared loga-
rithmic contributions which partially enhance their order
of magnitude and will be taken into account in Sect. 8 in
conjunction with second-order perturbation theory effects.
The evaluation for the πK atom of contributions of

diagrams of the type of Fig. 4 and of mass shift insertion ef-
fects have been done by two groups of authors [86–89]. Al-
though their results do not exactly coincide, the numerical
values that emerge for the corrective terms are close to each
other. We use here the numerical values given in [88, 89].
One has

δ
(1)
cc,hγ =O

(
e2
)
+O
(
e2 p2

)
+O
(
|mu−md| p

2
)

= (1.2− (0.3±3.2)+0.2)×10−2

= (1.1±3.2)×10−2, (70)

δ
(1)
cn,hγ =O

(
e2
)
+O ( |mu−md| )+O

(
e2 p2

)

+O
(
|mu−md| p

2
)

= (0.8+0.5− (0.8±0.7)+(0.7±0.2))×10−2

= (1.2±0.7)×10−2, (71)

where O(e2) and O
(
|mu−md|

)
represent effects of elec-

tromagnetism and isospin symmetry breaking mass inser-
tions at the tree level, O(e2 p2) and O

(
|mu−md| p2

)
ef-

fects of electromagnetism and isospin symmetry breaking
at one-loop level; the uncertainties arise mainly from the
electromagnetic low energy constants of the effective chiral
lagrangian, which are estimated by their order of magni-
tude. (We have added uncertainties quadratically in (71).)
The above modifications of threshold values of the am-

plitudes modify the results (55) and (56), obtained in the
pure strong interaction case, with the inclusion of the cor-
responding corrections:

E
(1)
h+hγ,n0 =−2µ

2 α
3

n3
(
a+0 +a

−
0

) (
1+ δ

(1)
cc,hγ

)

=E
(1)
h,n0

(
1+ δ

(1)
cc,hγ

)

=E
(1)
h,n0

(
1+(1.1±3.2)×10−2

)
, (72)

Γ
(1)
h+hγ,n0 = 8 p

∗
n0 µ

2 α
3

n3

(
a−0
)2 (
1+2δ

(1)
cn,hγ

)

= Γ
(1)
h,n0

(
1+2δ

(1)
cn,hγ

)

= Γ
(1)
h,n0

(
1+(2.4±1.4)×10−2

)
. (73)

7 Cancellation of divergences
of three-dimensional diagrams

We shall show in this section that divergences of constraint
diagrams do not appear in physical quantities. Up to order
α4 effects, the only divergences that are introduced by con-
straint diagrams are those that cancel the infrared diver-
gences of the on-mass shell scattering amplitudes. Other
divergences that might appear in the perturbation series of
the energy shifts are actually mutually cancelled.
To observe the latter property, we go back to the ma-

trix notation and express directly the scattering amplitude
T̃ ′2 [see (21)], that defines the perturbation expansion of the
energy shifts (24), in terms of two-particle irreducible ker-
nels. Let K̃1 be the two-particle irreducible kernel of the
unperturbed theory, that defines the potential V1; we have

V1 = K̃1
(
1− (G̃0− g0)K̃1

)−1
. (74)

The potential V2 is defined by V2 = V −V1, where V is
the potential corresponding to the total interaction. It is
related to the total scattering amplitude T̃ [see (3)] and to
its two-particle irreducible kernel K̃ [see (8)], which in turn
can be separated into two parts, after isolating in it K̃1:

K̃ = K̃1+ K̃2 . (75)

For the Green function G̃′1 that enters in the definition of
T̃ ′2 [see (21)], one can use a decomposition similar to that
of (44):

G′1 = g0+ g0V1g0+G
′′
1 , (76)

where G′′1 corresponds to the part created by multiparticle
or multiphoton exchanges.
Replacing then V1 and V in the expression of T̃

′
2 in

terms of K̃1 and K̃, respectively, and iterating T̃
′
2 and G̃

′
1,

one obtains for T̃ ′2 the following expansion, in which we
have kept up to two propagator terms:

T̃ ′2 = K̃2+ K̃2G̃0K̃2+ K̃2G̃0K̃2G̃0K̃2+ K̃2G̃0K̃1G̃0K̃2

+ K̃2G̃
′′
1K̃2+ K̃1

(
G̃0− g0

)
K̃2+ K̃2

(
G̃0− g0

)
K̃1

+ K̃1

(
G̃0− g0

)
K̃2G̃0K̃2+ K̃2G̃0K̃2

(
G̃0− g0

)
K̃1

+ K̃1
(
G̃0− g0

)
K̃1

(
G̃0− g0

)
K̃2

+ K̃2
(
G̃0− g0

)
K̃1

(
G̃0− g0

)
K̃1

+ K̃1

(
G̃0− g0

)
K̃2

(
G̃0− g0

)
K̃1+ · · · (77)
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The important point to be noticed is that the effect-
ive propagator g0 is completely absent in terms containing

only the kernel K̃2. g0 is present in terms that contain K̃1
on their left or right boundaries. Since the higher-order
electromagnetic corrections with respect to the Coulomb
potential appear at order α4 only at first order of pertur-
bation theory, one may simplify the analysis by assuming
that K̃1 corresponds essentially to the pure elecromag-

netic part, K̃γ , and K̃2 to the pure hadronic part, K̃h,
as well as to the interference part of the hadronic and
electromagnetic interactions, K̃hγ . The terms K̃1G̃0K̃2
or K̃2G̃0K̃1, in which K̃2 is represented by a constant
contact term, have infrared divergences, the dominant
part of which is cancelled by the constraint propagator
g0; the non-dominant divergences are mutually cancelled,
by considering together self-energy diagrams and even-
tually other combinations of t-channel and u-channel di-
agrams (cf. Sect. 6). The term K̃2G̃0K̃1G̃0K̃2, which in
lowest order is represented by diagram (a) of Fig. 5, is fi-
nite and actually its constraint diagrams (b)–(d) of Fig. 5
have been cancelled by similar terms that have appeared
through the perturbative expansion of the bound state en-
ergy. Similarly, the constraint diagrams which were present
in the definition of the hadronic potentials Vh (Sect. 3)
also disappeared. Those diagrams, considered individu-
ally, contain ultraviolet or infrared divergences (linear or
logarithmic). The present cancellation mechanism shows
that their effect is irrelevant. However, the way of or-
ganizing the perturbation expansion in terms of the po-
tentials V , rather than in terms of the kernels K̃ or the
amplitudes T̃ , has the advantage, through cancellation
effects by constraint diagrams, of naturally arriving at
quantities that are smooth functions of the energy in the
vicinity of the two-particle threshold, being continued,
within the present approximations, to threshold (cf. (50)
and (67)). Actually, it is only the finite parts of their con-
tributions that are relevant for that operation. This is
why we shall continue formulating the perturbative ex-
pansion of the bound state energy in terms of potentials,
keeping in mind that in mutually cancelling constraint dia-
grams the same convention should be used when removing
divergences.
In summary, no ultraviolet or infrared divergences glo-

bally occur from three-dimensional diagrams in physical
quantities up to oreder α4.

8 Second order of perturbation theory

We evaluate, in this section, the contributions of second-
order perturbation theory effects, which are represented by
the terms containing the subtracted Coulomb Green func-
tion G′C in (49). Here, the potentials that have significant
contributions are the hadronic part and the vacuum polar-
ization part of V cc.
We first consider the hadronic part Vcc,h of V cc, which

was already studied in Sect. 4. Its contribution to the en-
ergy shift at second-order of perturbation theory is repre-

sented by the following sum of terms:

2µE
(2)
hh,n� = ϕ

†
n�

[
Vcc,h

G′C
2µ
Vcc,h+Vcc,h

G′C
2µ
Vcn,hg0nVnc,h

+Vcn,hg0nVnc,h
G′C
2µ
Vcc,h

]
ϕn� . (78)

(A negligible contribution, involving two g0ns, has been
omitted.) Since at the approximation we are working Vcc,h
and Vcn,h are constants in momentum space (51), the con-
tribution of G′C factorizes with its integrations, and the
wave functions become projected on their values at the ori-
gin in x-space:

2µE
(2)
hh,n� = Vcc,h

[ ∫
d3p

(2π)3
d3p′

(2π)3
1

2µ
G′C

(
E
(0)
n� ,p,p

′
)]

×|ϕn�(0)|
2 [Vcc,h+2Vcn,h g0n Vnc,h ] . (79)

Defining
〈
G′C
2µ

〉

n�

≡

∫
d3p

(2π)3
d3p′

(2π)3
1

2µ
G′C

(
E
(0)
n� ,p,p

′
)
,

(80)

δ
(2)
hh,n� ≡ Vcc,h

〈
G′C
2µ

〉

n�

, (81)

and taking into account the results (51), (52), (55) and (56)
one obtains

E(2)hh,n� =E
(2)
hh,n�−

i

2
Γ
(2)
hh,n�

= δ
(2)
hh,n0

(
E
(1)
h,n0− iΓ

(1)
h,n0

)
δ�0 , (82)

which in turn yields

E
(2)
hh,n0

E
(1)
h,n0

= δ
(2)
hh,n0 ,

Γ
(2)
hh,n0

Γ
(1)
h,n0

= 2δ
(2)
hh,n0 . (83)

The calculation therefore amounts to that of the dou-
ble integral ofG′C/(2µ). The latter is composed of the three
contributions in (44).
The first corresponds to zero-photon exchange and its

integral is equal to that of g0c, i.e., to
√
−b20c(s)/(4π) [see

(A.5)].
The second term corresponds to one-photon exchange;

its integral is ultraviolet divergent, but this divergence is
cancelled by that of the three constraint diagrams of Fig. 5
(see the appendix for details). The finite part of the lat-
ter in turn cancels a finite logarithmic piece of the four-
dimensional diagram (a) of Fig. 5; therefore, the finite part
of the sum of the four diagrams of Fig. 5 becomes a smooth
function. The finite part of the one-photon exchange part
of the integral of G′C/(2µ) simply isolates the dominant
logarithmic part of the four-dimensional diagram.
The third term corresponds to the multiphoton ex-

changes and is finite. It can be calculated in several ways:
either using an integration by parts in the variable ρ and
isolating first the pole term to be subtracted [90], or inte-
grating first with respect to the momenta and isolating at
the end the pole term.
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The result is, for the finite part, using dimensional regu-
larization and writing the contributions of the above three
terms in successive order:

〈
G′C
2µ

〉

n0

=
µα

4π

1

n
−
µα

2π
ln
(n
α

)
+
µα

2π

(
ψ(n)−ψ(1)−

3

2n

)
,

(84)

where ψ is the logarithmic derivative of the Gamma
function.
Numerically, one finds, using (51),

δ
(2)
hh,10 = 0.009, δ

(2)
hh,20 = 0.008 . (85)

We next consider the interference term between the
hadronic and vacuum polarization parts of V cc. The cor-
responding energy shift is:

2µE(2)hvpol,n� = 2ϕ
†
n�Vcc,vpol

G′C
2µ

[
Vcc,h+Vcn,hg0nVnc,h

]
ϕn�,

(86)

which gives, using (52):

E(2)hvpol,n� =E
(2)
hvpol,n�−

i

2
Γ
(2)
hvpol,n�

= 2
(
ϕ†n0 Vcc,vpol

G′C
2µ

) 1

ϕ†n0(0)

×
(
E
(1)
h,n0−

i

2
Γ
(1)
h,n0

)
δ�0 . (87)

Defining

δ
(2)
hvpol,n0 ≡

(
ϕ†n0 Vcc,vpol

G′C
2µ

) 1

ϕ†n0(0)
, (88)

one has

E
(2)
hvpol,n0

E
(1)
h,n0

= 2δ
(2)
hvpol,n0,

Γ
(2)
hvpol,n0

Γ
(1)
h,n0

= 2δ
(2)
hvpol,n0 . (89)

The above correction is finite. Using the expression of
the vacuum polarization potential Vcc,vpol [81] and replac-
ing G′C by a sum of contributions of intermediate states
(discrete and continuous), one finds

δ
(2)
hvpol,10 = 0.30α� 0.002,

δ
(2)
hvpol,20 = 0.28α= 0.002. (90)

On comparing the orders of magnitude of the individ-
ual contributions of Vcc,h and Vcc,vpol from results (85)
and (90), one deduces that the ratio of the contributions of
the latter to the former is of the order of 1/4; this implies
that the contribution of the quadratic piece in Vcc,vpol is
in the ratio of 1/16 with respect to the quadratic piece of
Vcc,h, and hence can be neglected.

9 Summary of results

We calculated the main corrections to the lowest-order
formulas of the energy shift and decay width of the πK
atom. At lowest order, the energy shift and the decay
width are given by the formulas obtained by Deser et al.
(Sect. 4). They are expressed in terms of the S-wave scat-
tering lengths of the strong interaction πK → πK scatter-
ing amplitudes, taken in the isospin symmetry limit; they
are designated by E

(1)
h,n0 and Γ

(1)
h,n0, where n is the princi-

pal quantum number and � (here equal to zero) the orbital
quantum number.
The main corrections, of order α, that arise are the

following.

1. Pure electromagnetic interaction effects beyond the
Coulomb potential, designated by E

(1)
elm,n� (Sect. 5) in

the bound state with quantum numbers n and �. They
contribute only to the real energy shift.

2. Electromagnetic radiative corrections as well as isospin
symmetry breaking corrections to the strong inter-
action scattering amplitudes, the relative amounts of
which with respect to the lowest-order results are des-
ignated by δ

(1)
cc,hγ and δ

(1)
cn,hγ , according to the charged-

charged (π−K+ → π−K+) and charged–neutral
(π−K+→ π0K0) channels (Sect. 6).

3. Corrections coming from second-order perturbation
theory of the expansion of the bound state energies
(Sect. 8). They involve strong interaction type cor-

relations, represented by the relative amount δ
(2)
hh,n0

with respect to the lowest-order results, and strong
interaction-vacuum polarization type correlations, rep-
resented by the relative amount δ

(2)
hvpol,n0.

The real energy shift, ∆E, and the decay width,
Γ , including the O(α) corrections, take the following
expressions:

∆En0 =−2µ
2α
3

n3
(
a+0 +a

−
0

)

×
(
1+ δ

(1)
cc,hγ+ δ

(2)
hh,n0+2δ

(2)
hvpol,n0

)

+E
(1)
elm,n0, (91)

∆En1 =E
(1)
elm,n1, (92)

Γn0 = 8p
∗
n0µ

2α
3

n3

(
a−0
)2

×
(
1+2δ

(1)
cn,hγ+2δ

(2)
hh,n0+2δ

(2)
hvpol,n0

)
, (93)

where the S-wave scattering lengths a+0 and a
−
0 are those

of the pure strong interaction theory taken in the isospin
symmetry limit, µ the reduced mass of π− andK+ and p∗n0
the c.m. momentum of the neutral mesons after the decay
of the bound state with quantum numbers (n, �= 0).
The numerical values of the various corrective terms for

the first three bound states are summarized in Table 4.
The uncertainties come mainly from the low energy

constants of ChPT in the presence of electrmagnetism
which are poorly known and are taken into account
through their order of magnitude.
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Table 4. Numerical values of the corrective terms to the lowest-order formulas for the first three
bound states

n � δ
(1)
cc,hγ δ

(1)
cn,hγ δ

(2)
hh δ

(2)
hvpol E

(1)
elm(eV)

1 0 0.011±0.032 0.012±0.007 0.009 0.002 −2.66
2 0 0.011±0.032 0.012±0.007 0.008 0.002 −0.32
2 1 0.00 0.00 0.000 0.000 −0.03

The corrective terms have been evaluated using in them
the central values of the scattering lengths given by (57).
It is evident that they are weakly sensitive to the precise
values of the scattering lengths; changes of the order of
10% in the values of the latter quantities would induce only
changes of the order of 10−3 in the corrective terms. One
therefore can safely replace in (91) and (93) the corrective
terms by their numerical values and isolate the leading fac-
tors of the strong interaction scattering lengths.
The analytic results found in the present paper are

the same as those of [35, 36] at the order of approxima-
tions that are utilized. The apparent differences that exist
in some formulas or in some numerical quantities con-
cern either terms that are of higher order, and hence are
numerically negligible, or terms that have been evaluated
numerically in a different way, due to the existing large un-
certainties in the values of the electromagnetic low energy
constants. The first term of the right-hand side of (4.2)
of [36], which does not appear in our formulas, comes from
the second-order expansion of the last term of our (46).
It is a quantity of the order of αp4 in the ChPT counting
scheme. Such terms have been systematically neglected,
lying beyond the order αp2 which defines the order of mag-
nitude of terms that enter in our numerical evaluations.
Numerically, the abovementioned term is equal to 10−5,
which justifies its neglect. Concerning the remaining part
of (4.2) of [36] and (4.8), they correspond to our formulae
obtained in second order of perturbation theory (81)–(84).
Also, [36] neglects, in numerical calculations, the interfer-
ence term of vacuum polarization with strong interaction,
represented by the quantity 2δ

(2)
hvpol,n0 (= 0.004) above, the

latter being smaller than the uncertainties coming from
the electromagnetic radiative corrections. Finally, another
numerical difference appears from the values utilized for
the electromagnetic radiative corrections and isospin sym-
metry breaking effects. We have used the results provided
by [88, 89], which give directly the relative corrections and
relative uncertainties (our (70) and (71)). Reference [36],
using another publication of one of the authors of the above
references, evaluates the relative corrections with a two-
step procedure (4.4), (4.5), (4.9), (4.10) of [36], which re-
sults in slightly different values. The two results are, how-
ever, compatible within the existing uncertainties. A more
accurate evaluation of the electromagnetic low energy con-
stants, for instance by means of specific models, would
considerably reduce those uncertainties and at the same
time would remove accompanying ambiguities in numeri-
cal evaluations of related quantities.
The decay width of the ground state and the energy

splitting between the 2P and 2S states take the following

forms in the presence of the O(α) corrections:

Γ10 = 8p
∗
10µ

2α3
(
a−0
)2 (
1+0.046±0.014

)
,

(94)
(
E21−E20

)
=
1

4
µ2α3

(
a+0 +a

−
0

) (
1+0.023±0.032

)

+0.29 (eV) . (95)

These formulas allow one to extract from the experimen-
tal results on the decay width and the energy splitting
the values of the strong interaction scattering lengths a−0
and a+0 . We observe that the uncertainties in the correc-
tive terms are much smaller in the decay width than in the
energy splitting. This means that the decay width meas-
urement will give us a more precise value for the scattering
length a−0 than the measurement of the energy splitting
for the combination (a+0 +a

−
0 ). On the other hand, the lat-

ter quantity is sensitive, through its dependence on the
low energy constants L4 and L6, to the Zweig rule violat-
ing effects [70], and therefore its precise knowledge is of
crucial importance for the understanding of the chiral sym-
metry breakingmechanism and of the dynamical role of the
strange quark [91–94]. A precise knowledge of a−0 , which
mainly depends on the low energy constant L5 [72], allows
us to have a better insight into the ratio FK/Fπ of the kaon
and pion weak decay constants [70].
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Appendix: Three- and four-dimensional
integrals

Integrals are calculated with dimensional regularization,
with dimension d close to 4. µ is the mass scale of the
d-dimensional theory.
For the various integrals with two, three or four prop-

agators, we use a notation similar to that of Brown and
Feynman [95]. In an elastic two-particle scattering process,
we designate by p1 and p2 the incoming particle momenta,
with masses m1 and m2, respectively, and by p

′
1 and p

′
2
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the outgoing particle momenta, with the total momen-
tum P = (p1+p2) = (p

′
1+p

′
2) and the momentum trans-

fer q = (p1−p′1) = (p
′
2−p2); the Mandelstam variables are:

s= P 2, t= q2, u= (p1−p′2)
2.

For the propagators, we use simplified notations, where
k is the loop momentum variable:

1

(1)
=

i

(p1−k)2−m21+iε
,
1

(2)
=

i

(p2+k)2−m22+iε
,

1

(−1′)
=

i

(−p′1−k)
2−m21+ iε

,

1

(−2′)
=

i

(−p′2+k)
2−m22+ iε

,

1

(0)
=
−i

k2+iε
,
1

(3)
=

−i

(q−k)2+iε
. (A.1)

The definitions of the integrals are:

J =

∫
[dk]

1

(1)(2)(0)(3)
, F =

∫
[dk]

1

(1)(2)(3)
,

H =

∫
[dk]

1

(1)(2)(0)
, G(1) =

∫
[dk]

1

(1)(0)(3)
,

G(2) =

∫
[dk]

1

(2)(0)(3)
, A=

∫
[dk]

1

(1)(2)
, (A.2)

where [dk] = µ4−dddk/(2π)d. Vector and tensor general-
izations of these integrals correspond to the cases where
momenta kµ or kµkν appear in the numerator of the
integrands.
Crossed diagrams involve integrals where (2) is replaced

by (−2′). The corresponding integrals are defined as:

J(1,−2′) =

∫
[dk]

1

(1)(−2′)(0)(3)
, (A.3)

etc.
Constraint diagrams involve three-dimensional integ-

rals which result from the s-channel four-dimensional in-
tegrals by the replacement of the two propagators of the
incoming particles by the single effective propagator g0 [see
(5)]. The corresponding integrals are in the c.m. frame

JC =−
2π

2
√
s

∫
[dk] δ(k0)

1

(1)(0)(3)
,

FC =−
2π

2
√
s

∫
[dk] δ(k0)

1

(1)(3)
,

HC =−
2π

2
√
s

∫
[dk] δ(k0)

1

(1)(0)
,

AC =−
2π

2
√
s

∫
[dk] δ(k0)

1

(1)
. (A.4)

The factor 1/(2
√
s) that has been incorporated in the

definitions takes account of the fact that constraint di-
agrams contain one more scattering amplitude than the
four-dimensional integrals and the latter is defined with
the factor i/(2

√
s) [see (2)]; the factor i is now contained

in the definition of the meson propagator; the minus sign is
reminiscent of a similar sign in front of g0 in (3).

The three-dimensional integral of the effective propaga-
tor g0 [see (4)–(5)] is, in the vicinity of d= 4:

i2
√
sAC = µ4−d

∫
dd−1k

(2π)d−1
1

b20(s)−k
2+iε

=
1

4π

√
−b20(s)

[
1+

(
d

2
−2

)

×

(
−ψ(1)−2+ ln

(
−4b20(s)

4πµ2

))]
, (A.5)

where −b20(s) is taken positive and ψ is the logarithmic
derivative of the Gamma function. Analytic continuation
to positive values of b20(s) is done with the replacement√
−b20(s)→−i

√
b20(s).

The integral A is

A=
i

16π2

[
2

d−4
−ψ(1)−2+ ln

(
m1m2

4πµ2

)

+

(
m21−m

2
2

)

2s
ln

(
m21
m22

)
+Q(s)

]
, (A.6)

with

Q(s) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+

√
4sb20(s)

s

[
ln

(√
s−(m1−m2)2+

√
s−(m1+m2)2√

s−(m1−m2)2−
√
s−(m1+m2)2

)
− iπ

]
,

(m1+m2)
2 < s,

+

√
−4sb20(s)

s

[
π−arctan

( √
−4sb20(s)

s−(m21+m
2
2)

)]
,

(m1−m2)2 < s < (m1+m2)2,

−
√
4sb20(s)

s ln

(√
(m1+m2)2−s+

√
(m1−m2)2−s√

(m1+m2)2−s−
√
(m1−m2)2−s

)
,

s < (m1−m2)2.
(A.7)

The integral of G̃0, entering in (6), (65) and (74), is equal to
−i2
√
sA.
The integral J is equal, on the mass shell, to

J =−
i

16π2
1

t
√
−b20(s)s

[
2

d−4
−ψ(1)+ ln

(
−t

4πµ2

) ]

×

[
arctan

(
s+m21−m

2
2

2
√
−b20(s)s

)
+arctan

(
s−m21+m

2
2

2
√
−b20(s)s

)]
.

(A.8)

Its threshold expansion is obtained by taking into account
the facts that |t| 
 s� (m1+m2)2, |b20(s)| 
 s:

J =−
i

16π2
1

t

[
2

d−4
−ψ(1)+ ln

(
−t

4πµ2

) ]

×

[
π

√
−b20(s)s

−
1

m1m2

]
+O
(
α3 lnα−1

)
, (A.9)

where the order of magnitudes are evaluated with the
counting rules of the QED bound states. The latter ex-
pansion can also be obtained with the threshold expansion



576 H. Jallouli, H. Sazdjian: Energy and decay width of the πK atom

method of [66]. The singularity in 1/
√
−b20(s)s is produced

by the potential momenta, while the term in 1/(m1m2) is
produced by the soft momenta. Ultrasoft momenta do not
contribute at leading orders, while the hard momenta con-
tribute at O(α3).
The expression of J(1,−2′) is obtained from that of J

by the replacement of the variable s by u. Its threshold ex-
pansion is obtained by noticing that u� (m1−m2)2− t−
b20(s)(m1+m2)

2/(m1m2):

J(1,−2′) =−
i

16π2
1

t

[
2

d−4
−ψ(1)+ ln

(
−t

4πµ2

) ]
1

m1m2

+O(α3 lnα−1) . (A.10)

The potential momenta do not contribute at leading order
to J(1,−2′) and the leading term comes now from the soft
momenta.
The three-dimensional integral JC is equal to:

JC =
i

16π2
1

t

[
2

d−4
−ψ(1)+ ln

(
−t

4πµ2

) ]
π

√
−b20(s)s

.

(A.11)

Taking now the sum of the integrals J , J(1,−2′) and
JC , we find that JC cancels the potential momenta contri-
bution of J , while the soft momenta contributions of J and
J(1,−2′) cancel each other:

J+J(1,−2′)+JC =O(α3 lnα−1) . (A.12)

A similar type of analysis also applies to the sum of the
three diagrams (b)–(d) of Fig. 2 arising in QED. Here, the
couplings being vector-like, one first decomposes the vari-
ous integrals into a tensor sum, involving integrals of the
types J , F , H, G, etc. and their vector and tensor asso-
ciates. Taking into account the α2 factor coming from the
couplings, the sum of all these contributions vanishes up to
order α4. (Notice that the constraint diagrams should be
calculated as three-dimensional integrals involving g0 and
one or two on-mass shell one-photon exchange diagrams.)
The above result does not remain true in an off-

mass shell formalism. Here, the scattering amplitude is
no longer gauge invariant and slight differences arise.
The sum (A.12) yields now a O(α) term and gener-
ally the sum of the three previous diagrams behaves as
O(α3) [48]. The latter term, which is spurious, is cancelled
by a higher-order diagram. Nevertheless, in the Fried–
Yennie gauge [51], the same results as in the on-mass shell
formalism occur.
Integrals F and H appear also in electromagnetic ra-

diative corrections to the strong interaction. Integral H
appears in diagram (c) of Fig. 4; diagram (b) corresponds
to its crossed diagram involvingH(1,−2′); diagram (d) in-
volvesHC ; diagram (a) involvesH in the t-channel.H has
the following threshold expansion:

H =−
1

32π2
π

√
−b20(s)s

[
2

d−4
−ψ(1)+ ln

(
−4b20(s)

4πµ2

) ]

−
1

32π2s

{[
2

d−4
−ψ(1)+ ln

(
s

4πµ2

)
+2

]
1

β1β2

−2

[
1

β1
ln

(
1

β1

)
+
1

β2
ln

(
1

β2

) ]}
+O(α4 lnα−1) ,

β1 =
1

2

(
1+
m21−m

2
2

s

)
, β2 =

1

2

(
1−
m21−m

2
2

s

)
,

(A.13)

where the dominant singularity comes from the potential
momenta and the next-to-leading terms from the hard mo-
menta. (The soft and ultrasoft momenta do not contribute
at leading orders.)
The crossed integral to H is:

H(1,−2′)

=
1

32π2s

{[
2

d−4
−ψ(1)+ ln

(
s

4πµ2

)
+2

]
1

β1β2

+
2

(β1−β2)

[
1

β1
ln

(
1

β1

)
−
1

β2
ln

(
1

β2

) ]}

+O(α4 lnα−1) , (A.14)

where only hard momenta contribute. The integral enter-
ing in the t-channel vertex function (diagram (a) of Fig. 4)
isH(1,−1′;m1,m1):

H(1,−1′) =
1

32π2m21

[
2

d−4
−ψ(1)+ ln

(
m21
4πµ2

)]

+O(α4 lnα−1) . (A.15)

It can also be obtained from the result (A.14), by taking in
it the limitm2→m1.
HC is equal to the opposite of the contribution of the

potential momenta inH:

HC =
1

32π2
π

√
−b20(s)s

[
2

d−4
−ψ(1)+ ln

(
−4b20(s)

4πµ2

) ]
.

(A.16)

If Σ(p2,m2) is the meson electromagnetic self-energy,
taken for the moment with scalar couplings, then, after
a mass-shell renormalization, it is the quantity 12

∂Σ
∂m2
|p2=m2

that multiplies in lowest order the strong interaction ver-
tex. This yields −1/2 of the value of the t-channel form
factor at t= 0 [see (A.15)]. The self-energy contributions of
the two external mesons of that form factor then cancel the
latter completely at leading order. Similarly, the sum ofH,
H(1,−2′) andHC yields a finite O(α3) term.
The above results should be completed by incorporat-

ing the vector coupling of the photon. The latter does not
change the leading behavior of HC . Concerning the four-
dimensional integrals, the only modifications are through
the hard momenta contributing with finite O(α3) effects.
(Loopmomenta in the numerators improve the infrared be-
havior of the object.) Taking also into account the factor α
coming from the photon couplings, the sum of all contribu-
tions reduces to a finite O(α4) term.
Diagrams where the photon is emitted from the vertex

are not infrared singular and give contributions of orderα4.
In the case of the charged–neutral channel (process

π−K+ → π0K0), the integrals of the t-channel and u-
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channel form factors are absent. In that case, the cancel-
lations occur between the sum H+HC and the contri-
butions of the self-energies of the two external charged
mesons, taking into account the vector coupling of the pho-
ton. The result is again a finite O(α4) term.
The integral that contributes to the dominant part of

the constraint diagram (d) of Fig. 5 is denoted ICC ; it is:

ICC =
1

2
√
s
µ2(4−d)

∫
dd−1k

(2π)d−1
dd−1k′

(2π)d−1
i

b20(s)−k
2+iε

×
i

b20(s)−k
′2+iε

(−i)

−(k−k′)2+iε

=
i

64π2
√
s

(
1

d−4
−ψ(1)−1+ ln

(
−4b20(s)

4πµ2

))
.

(A.17)

The integral that contributes to the dominant part
of diagram (b) of Fig. 5, denoted IC is calculated in the
following way. One first calculates the four-dimensional
integral on the mass shell; the latter is then integrated
three-dimensionnally, by extending eventually the do-
main of validity of the momentum transfer squared t.
The four-dimensional integral on the mass shell is noth-
ing but H (A.13). The latter is independent of t. Hence
the three-dimensional integration reduces to that of ig0,
given by (A.5) times i. The result is therefore the product
of the right-hand sides of (A.13) and (A.5), times i; since

the integral of g0 is of order
√
−b20(s), it is sufficient to re-

tain the dominant singularity ofH. One finds the opposite
value of ICC (A.17). Hence the sum of the three constraint
diagrams of Fig. 5 is given by the opposite value of ICC ;
the finite logarithmic part of it cancels a similar term in
the diagram (a) of Fig. 5 [66]. As we emphasized in Sect. 7
and Sect. 8, the infinite part of ICC is cancelled by a similar
term present in second order of the perturbation theory ex-
pansion of the bound state energy. The finite part that has
been retained in the right-hand side of (84), second term,
corresponds to the contribution of the factor −b20(s) of the
logarithm.
The integrals G (A.2) are infrared finite and receive

contributions at leading order from potential and soft mo-
menta with the ratio (2)/(−1):

G(a) =−
1

32ma

1
√
−t
+O(α3 lnα−1), a= 1, 2 .

(A.18)
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